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ABSTRACT 

The theory of spectral line interferometry is developed with special reference 

to interferometer systems built to study the emission from interstellar OH 

molecules. Expressions for the root-mean-square noise of visibility ampli- 

tude and phase are derived in terms of the geometric means of the system and 

antenna temperatures. Methods are discussed for obtaining the visibility 

function from measurements made at widely separated sites by means of pre- 

cise frequency and time standards. 
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SPECTRAL LINE INTERFEROMETRY 

AND INTERFEROMETER NOISE ANALYSIS 

I. INTRODUCTION 

1 
The detection    of 18-cm radiation from interstellar Oil molecules has shown the need for 

adding the frequency dimension to interferometry.    Because of the inability of large parabolic 

antennas,   such as the NKAO 140-foot antenna and the 210-foot antenna in Australia,   to resolve 

the 18-cm spectral lines,   several spectral line interferometers have been built to measure the 
2-4 

spatial distribution of OH emission. Basically,   spectral line interferometry is no different 

from conventional interferometry in which no frequency analysis is performed;   however,   the 

spectral line interferometer is more versatile than the more conventional interferometer and 

has led to some improvements in conventional interferometry.    In particular,   the high-speed 

computers and digital processors used in spectral analysis are easily adapted to perform fringe 

rotation and delay compensation as well as the spectral analysis. 

II. PRINCIPLES  OF INTERFEROMETRY 

Fourier theory relates the time domain electric field F(r, t) to its Fourier components 

E(r, OJ) in the frequency domain by the Fourier integrals 

(r';«) eica  g (II-l) 

K(r, a) =   \    E(r,t) e~lwt dt       . (II-2) 

In an exactly analogous way,   the Fourier component E(r, ic) can be decomposed into spatial com- 

ponents E(k, LJ) where each spatial component is a plane wave 

Re{E(k,w) eiu-'t"ik'r} (11-3) 

so that 

and 

— CC -, -\?~*  ^k dk 
E(r,w) =   \\   E(k, w) e"lk'r       x   / (II-4) 

F(k, u-) =   \\   E(r, o) elk'r drxdr        . (11-5) 



Integration over only two dimensions is necessary as 

|k|  =  ^ (11-6) 

thus,   only two components of  k   are independent. 

Theorems of the Fourier theory of time functions carry over into the two-dimensional Fourier 

theory of plane waves.    The relation of the power spectral density S(r, w) to the autocorrelation 

function <E(r, t) x H*(r, t - T)> 

S(r, w) = E(r, u) X H*(r*, w) =   \    <E(r, t) x H*(r, t - T)>T e"la'T dr (11-7) 

which holds for a time function assumed zero outside the interval 

0 < t < T 

has a two-dimensional equivalent 

S(k, w) = E(k, u) x H*(k, w) =   \ \    <E(r, w) x H*(r - y, w)>_ elk'Y dy  dy ,      (II-8) 
i: 

and inverse transform 

— -* cc -* . * — dk  dk 
<E(r, u) * H*(r*-y, w)>_* =   \\   S(k, aTe"     y        X   / (11-9) 

R   
JJ {z*r 

where < >     denotes a time average 

\ 
'   K(r,t)xH(r,t-r)  ()t (n.1()) 

and  ^ X. a spatial average.    Thus,   the power in the direction  k   is given by the two-dimensional 
R 

transform of the spatial crosscorrelation function.    The power in the direction   k   per unit solid 

angle and frequency interval is more commonly known in radio astronomy as the brightness 

distribution,   while the spatial crosscorrelation is often known as the complex visibility function 

or "fringe" amplitude and phase.    When two antennas are used to measure the spatial cross- 

correlation,   the electric fields have been filtered by the antenna apertures.    If the two antennas 

decompose the electric field vector into two orthogonal polarizations   a  and  b,   then 

ik-y 
// Xa(w) Yb(a'' e'   '7 ciyxdY 

T    ,(k,k,co)=    , ^—4 (11-11) a,b    x    y 
G     (k ,k , w) G*  (k  , k  ,u)\ 

I   xa    x    y yb   x    y       | 

where X(GJ) and Y(u) are the Fourier components of the antenna outputs.     |G   j     and  |G   |     are 
_» x y 

the antenna power gains,   and y   is the vector from the phase center of antenna  V   to the phase 

center of antenna  X.    T    ,   is the brightness temperature for the Stokes parameter a, b.    k •  y/aj 

is the delay which a signal wave vector  k   will undergo in reaching the phase center of antenna 

X.     | k|  y  /ZTT and  |k|  y   /27r are the projected baseline components in wavelengths which produce 

fringe spacing of 27r/|k|  y    and 27r/|k|  y    radians in the  x  and  y directions.    The sampling 



theorem which is usually applied to band-limited functions can be applied to the complex visibility 

and its transform.    When the source distribution is limited to ±9    and ±e  ,  then the complex 
XV 

visibility function need only be sampled at integral multiples of (EG   )      and (20   )      wavelengths. 

Also,   since the brightness temperature is real 

[X  (co) Y*(w)l = [X  (CL-)Y*(«)]« (11-12) 1   a b     "y  ,y       L   a b        -y  ,-y 'x   y 'x      y 

so that only half the complex visibility plane has to be mapped. 

In practice,   it is not easy to sample the complex visibility plane,   as it is physically difficult 

to move antennas;   consequently,   in many interferometers the only points on the complex visibility 

plane that can be sampled are those on the contour mapped out by the source motion.    Sources 

with fixed right ascension and declination trace out an ellipse on the complex visibility plane — 

a portion of which will be inaccessible if the source is not circumpolar.    If azimuth and elevation 

are used,   coordinates refer to the Zenith i„.  North LT,   and East i„,   then Z N E 

_» /\ A /\ 
y = D sinE-^i• + D cosEn sinA_i„ + D cos E„ cosA^i.. (11-13) 

r> CJ I3 iS ill r> o IN 

-»       0)    r A n A    l k =   —  {sinE„i„ + cos E„ sinA„iF + cos E„ cosA„i   ) (11-14) 

where  D   is the baseline length,   E„ and A„ are the elevation and azimuth of the baseline,   and 

A„ and E,-, are the apparent azimuth and elevation of the source.    C   is the velocity of light along 

the baseline.    The axes of rotation on some antenna mounts do not intersect,   so the baseline 

becomes dependent on the source position.    In these cases,   additional vectors have to be intro- 

duced.    From Eqs. (11-13) and (11-14), 

y.   k  = ui.    , =   -p-   {sinER sinE„ + cosER cos E„ cos(A„ — AR)}       .       (11-15) 

It is often more convenient to use coordinates centered on a reference position in the sky close 

to the source being studied,   in which case 

y •   k  = OJT.    f =   -p-   {sin6     sin 6„ + cos 6     cos 6„ cos(L„ - L_)} (11-16) 

where   L  is the hour angle,   and  6   is the declination.    In this coordinate system,   k    and k    can x        y 
be expressed to first order in terms of the angular displacements in 9    right ascension and 0 x y 
declination.    The components of projected baseline in the direction of increasing right ascension 

and declination are y    and y   ,   where 

y    = D cos6D sin(L„ - LD) (11-17) 

y    = Dfsine,-, cos6c - 0036^ sin6c cos ( Lc - L_)} (11-18) 
y a o rS o o hi 

kx=UGx (II-19) 

ky =  g   9y       . (11-20) 

HI.   METHODS OF CROSSCORRELATION 

Although the spectral visibility function X (u) Yr(co) can,  in principle,  be determined by 

Fourier analysis and cross multiplication at the signal frequency,   in practice the signal band 



is reduced to video by single- or multiple-frequency conversion stages.    After mixing with a 

local oscillator of frequency UJ    and phase   8,   the Fourier components of the output are 

x(w) = X(w + w   ) e'lG + X(u' - o:   ) elG       . (1II-1) 

Thus,   for an upper-sideband system 

X(w) = X(OJ - w   ) elG ,       u > 0 (III-2) 

and 

iAu.'   t 
Y(u>) = y{w - x   ) c        "   eU"       ,       a > 0 (III-3) 

if the receiver  Y   has local oscillator frequency a.'    + A a'    and phase   w.    Hence, 
^     o o 

-iAoj   t    ..„_    . 
X(w) Y*(w) = x(u - w   ) y*(w-w   )>e °   e

1(      <p'      ,       OJ > 0      . (III-4) 

In order to obtain the complex visibility function in a form referenced to coordinates fixed in the 

sky,   it is necessary to take out the rapid phase changes caused by source motion 

, •?*"* ilc     .'Y    . ,-"•  •* 
v,      i   ir.:l      I       +1K-Y , •,      >   ,-.,      , ref IK   -V 
X(OJ) Y*(w) e '  = \{LO) Y*(OJ) e e        ' 

= X(a) Y-(OJ) e e e J   J       . {III - 5) 

The visibility function referenced to the sky, A e , can be decomposed into various frequency- 

dependent and independent terms 

®iu;T      „ 
He      = X(a>) Y(OJ)* e 

iu,'   T     r    i(oj-u)   )T     ,.    -iAu)   t     .,„       . 
, .     ,, , o  ref o    ref o      i(9-io) /ITT   ZN 

= x(w - w     y*(aj — w      e e e e*      ^' III-6) 
o   J o 

where 

dr     , 
r el 

u;     —n— = the fringe rotation rate, 
o     dt 6 

(u; — CJ   ) T     f = the frequency dependent phase. 

Aw    = the local oscillator frequency difference, 

(9 — (f) - the instrumental phase. 

Equation (III-6) shows that it is possible to rotate the fringes by offsetting the local oscillators. 

T f should also include constant delays or instrumental delays in the system, such as those in 

cables and IF amplifiers.    The signals are filtered so that 

x'(w — U)   ) - x(u) — to   ) B   (GJ — GJ   ) (III - 7) 
O O        X o 

y'(w - w   ) = y(w - w  ) B (w - OJ   ) (III-8) J o       J o      y o 



where B    and B    are the Fourier transforms of the bandpass functions for the two receivers, 

so that 

. p> o  ref o    ref o     l(e-cp) 
A e1    = x'(u-u) y*(w -to  ) § ^-. r-jj-^ ^       . (III-9) 

o o B  (OJ — w   ) B*(w — a)   ) 
x o      yv o 

This may be computed directly from a Fourier analysis of the signals,   provided the time varia- 

tion of the phase is small over the period of Fourier analysis  T.    The cross-spectral function 

may also be estimated by crosscorrelation in time and subsequent transformation since 

/ ioj   T     „    -iAu'   t    ....      . \ 
•>+«    / o  ref o      1 6-ffl   \ 

e e e v      ^' \ {A e1®} =  J  "   /x'(t)y'(t-rref-T) 
B  B* 

x y 

- i( u) - W   ) T 
x e °     dr W(T) (III-10) 

under the condition that T » a.    The visibility function has been averaged over frequency with 

an effective filter response 

[ 
+a 

cos AUT W(T) dT (III-ll) 
-a 

where W(T) is the transform weighting function. 

The time crosscorrelation technique is particularly easy to implement if the signals are 

first infinitely clipped so that when 

y', x'(t) >0      y", x"(t) = 1 

< 0       y", x"(t) = -1 (111-12) 

in which case 

<x'(t) y'(t - T»T = [<x2'(t)>T <y2,(t)>T]l/2 

sin| <x"(t) y"(t-T)>T (111-13) + 

from the theory of Van Vleck.     The time crosscorrelation can only be performed for time in- 

tervals over which 

iu)   T      -it)    -lAco   t o  ref o 
! e (111-14) 

However,   the time crosscorrelations can be rotated and averaged before the Fourier transform 

is taken.    In practice,  the local oscillators are set to take out the linear portion of the fringe 

rotation and the rest of the rotation is taken out after crosscorrelation,   i.e., 

iojT     .    -iAo.-   t\ / / \\ 

x'(t)y'(t-Tref-T)e       re   e °)T=   Z   (*•<*> 4-Treft,-
T))t, 

icor       „(t')      -iu!    t' 
x e       re e       ° (III-1 S> 

t x" and  y" are normalized to unit energy for time  T. 



where  t'  is a discrete time midway through each crosscorrelation.    An additional requirement 

for this scheme to work is that the change of T     f from one period to the next is small enough 

that 

Aw AT     , «  7r       . (111-16) ref 

IV.   CALIBRATION OF AN INTERFEROMETER 

The normal convention in interferometry is to state visibility functions normalized so that 

an unresolved point source has a fringe amplitude of unity.    When this is the case,  the brightness 

temperature distribution can be obtained from the normalized distribution (the transform of 

normalized fringe amplitude and the source flux) 

pp (io.'/c)0  y      (iu;/c)e  y 
TN(^6x'ey)=  JJ   An("-VVe XXe dV*y <IV-*> 

F(w) TN{u, e   e ) 
T_(o;, e   , 9   )= L       . (IV-2) 

X     y /TvdO 

There are many ways of obtaining the normalized visibility function,   about the simplest of which 

is to make measurements with zero spacing,   since 

A(u,\y     y   ) 
A (".Y .y  ) = —fTi TClfr (IV-3) n       ' x    y A(co', 0, 0) ' 

but it is seldom possible to do this when the antennas are fixed.    Thus,   a more complicated 

method of calibration has to be employed which uses the measurements made with the individual 

antennas.    For a single antenna 

[x'( w — a;   ) x' *(oj — w   ) — x'    r x' * ,1 T0 TAM = 2 L° ref   ref'     S (ly.4) 

ref   ref 

where T.   is the system temperature,   and x'    , is the Fourier component of the video output on 

cold sky.    From Eq.(III-13), 

S(w)T'-S (u) T 

TA(-> =    S (SV  (IV"5) 
n
BP 

where S    are the Fourier transforms of the clipped autocorrelation function 
n rr 

Sn(w) = J  sin | <x"(t) x"(t- r)>T e" dr W(T) 

and 

T„ x total noise power on source 

S ~       total noise power off source 

When the projected baseline is zero,  the signals are perfectly correlated so that 

X(W - wQ) =  cx      /TA   (OJ) SX(U>) +    fT\Tnx(w) (IV-7) 



y(oj -wo) = c|   /TA  (w) Sy(w) +   /Tg ny(u>) 

where c   , c    are constants,   and S(OJ) and n(a>) are normalized so that they each have unit magni- 

tude.    From Eqs.(III-7) and (III-8), 

A(co,0, 0) = c   c      /TA   (w) TA   (u) 
y "7        x y 

fix     ,x*  ,) (y     ,y*  ,)    IT.   (CJ) T.   (O.') 
•V    ref   ref    ^ ref •'ref    /    A A 

X ^  (IV-9) 
2 ,„   ,2 

i\Ts^,B/ |By 
so that 

y 

orefe °    refe °   e1*9"^   /To  Te     /B 
2B2 

S     S   V    x    y 
y 

n B  B*   /T.   T.      /TX     „X*   f) (y    ,y*  , 
-   v /    A     A    *J     ref ref    Jrerref 

' V        x      y 

A  (to,Y  ,V   ) =  " X ^  (IV-10) 

x 

S      (co)   /T'   T'      /B  B*B  B* 
n/S     S   V    x   x   y   y 

xy   ^   x  y  (iv-ii) 

/Sn <->Sn        <->   /TA   (-»TA(W) B
X

By 
/      BP BP V        x y J 

V x y y 

for the clipped system,   where 

Jl iai   T     .    -iAoj  t 
sin |  (x-(t)y"(t-Tref-T)e     °  ref e °   e1'9^' 

-i(ct)-o)   )T 

x e °     dr W(T)       . (IV-12) 

V.    NOISE ANALYSIS 

The signals can be represented in the frequency domain by 

X(OJ) /TA  (a:) Sx(co) +   f^Snx{uj) (V_1) 
V X V X 

y(u) =    /T     (w) S  (w) +   jY^n (to) (V-2) 
y       y        N/     y y 

where T.   and T„ are the antenna and system temperatures,   respectively,   and  |S(u.')|     and 

|n(o))|     are unity.    If the signal and noise are both Gaussian,  they have independent Gaussian 

components with probability distribution 

1       -z2 

p(z) =   e (V-3) 
\l~ir 

where z = Re S(to),  Im S(u>),  Re n(w),  Im n(oj) so that 



x(u) x*(w) = T.    (a;) {[Re S  (a>)]    + [Im S ,(a')l   } 

+ Tc    {[Re n (cc)]2 + [Im n (a.')]2} 
o X X 

= TA   (W)+Ts (V-4) 

while 

^2 
[x(w) x*("-•)!    - [x(w) x*(w)]    = T^   (u) {[Re Sx(u;)f + [Im Sx(w) 

+ 2 [Re Sx(a.')]2 [ImSx(^)l2}  + Tg
2 [Re Sx(u>: 

+ [Im njw)]        |TA   (w) + T 

+ 2 [Re S ,(a')]2 [Im n (w)] 

+ 4TA  Tg    {[Re Sx(a.-)12 [Re n (w)l2 +. . . } 
x      x 

= [TA <-)+TS r 
l      x xJ 

(V-5) 

where the bar denotes the statistical or ensemble average.    If an average is performed over fre- 

quency,   then 

2 

Var  <x(o.') x*(o;)> 
(TA    + T

SJ 
Ac; At,' 

27T 

(V-6) 
At 

since there are (Au,'/27r) At independent frequency Fourier components in the time interval At. 

The above result is the well-known noise in a total-power radiometer.    Now,   consider the cross 

spectrum multiplied by a factor of two so that the results can be compared with a total-power 

radiometer 

y 
2x(u>) y*(w) = 2 /TA (o>) TA (co) S^u) S*(w) + 2 /Tg Tg nju)  n*{w] 

x y 

+ 2 /TA (w) Tg S (u) n*(co) + 2 / TA («) Tg n^o;) S*(w)  . 
x     y     ^      v   y     x      -^ 

(V-7) 

The first term is the signal and has a statistical average equal to twice the visibility function, 

while the uncorrelated portion of the first term and the other terms make up the noise.    The 

first term can be considered as the vector 



= 2 Ho   /TA   («) TA  (W) Sx(co) S*(«) iRe 
x y 

+ 2 Im   /T      (a-) TA   (w) S (w) S*(w) i, 
v       x y 

im (V-8) 

In the case of a weak signal (T.   « T   ) perfectly correlated such as that from a point source, 

the noise vector is just 

N = 2 Re   /T„  T„  n (w) n*(co) iD S     S     x v Re x     y 

+ 2 Im   /Tc  Tc  n (u>) n*(w) L /    S     S     x y        Im v       x     y '    J 
(V-9) 

The real and imaginary components are Gaussian random variable with zero mean and 

|2   /Ts Ts   Re nx(o.-) n*(w) 
x   ' y y 

4TS  Ts    {[Re n^o;)]2 [Re n  (a;)]2 

x     y 

+ (Imn   )2 (Im n  )2} x' y 

=  2T     T 
x    y 

The real and imaginary components are independent since 

(V-iO) 

Re n  n* Im n n* = (Re n    Re n    + Im n    Im n   ) (—Re n    Im n    + Re n    Im n   ) xy xy'x y x yv x y y x' 

using the property that 

(V-ll) 

1234        1234 1324 1423 (V-12) 

for a Gaussian process.    The probability distribution of the noise vector is 

1 
p(a, b) 

-(a2+b2)/2a2 

2ir<j 

(V-13) 

where 

-»        A 
a = N •   i 

Re 

b = N •   L 

(V-14) 

(V-15) 

and 

2TS  TS 
2E y. 

Aqj 
2TT 

At 
(V-16) 

so that 



P(|N|)=   I^e-|N|2/2.2       |if|>0 (V-17) 

p(6) =   =-       0<6<27T (V-18) 

The length of the noise vector is a Rayleigh distribution with mean \l (ir/2) a and ( |N |    ) = 2a  ,   as 

shown in Fig. i. 

»i 

|N| 

Fig. 1.    Probabil ity distribution 
of amplitude of noise vector. 

The rms deviation of the amplitude A   and phase   ip   of the visibility function estimate can 

be simply written only when the signal vector is much stronger than the noise vector,   in which 

case 

S + N (V-19) 

and 

S +N|2 =   ISl2 +  iNl2 

AA =(|N|V/Z 

rms       '     ' 2a 

2   /TS  TS 
*    y 

A a,' 
2TT 

At 

"K 

(V-20) 

(V-21) 

and 

A   = 2 T.    (a;) T.   (CJ)       °K for point source 
x y 

(V-22) 

A(p 
a 

A 

^2 
\ 

A 

/TSTS x   y 

/^At 
V    27T 

|N|
2
 sin2e 

A2 
(V-23) 

Expressions for intermediate signal levels have to be evaluated by integration.    If the cross- 

correlation technique is applied to a single antenna,  the signal vector reduces to   / T.   T.     since 
V     Ax   Ax 

3 dB is lost in splitting the power between receivers,   while the rms noise is a = Ni^T^/V (Aaj/27r) At 

since only one component of noise affects the signal whose phase is fixed.    The crosscorrelation 

receiver thus  has v2  more  noise  than the total-power  receiver,   but  yields  the  additional 

10 



information of receiver baseline subtraction.    When an interferometer is used to measure the 

flux of a point source whose position in the fringe pattern is unknown,  the signal-to-noise ratio 

is the same as that of a total-power radiometer of one antenna if both interferometric antennas 

and receiver systems have the same signal-to-noise ratios.    In the preceding analysis,   only the 

case of a point source and a high system-to-signal temperature ratio was considered.    In the 

other extreme,   when the normalized fringe amplitude is much smaller than unity,  the magnitude 

of the signal vector is 

2   /TA   (w) TA  (u)  |AJ (V-24) 

and the rms noise ( |N|   )  '     is 

TA  («) + Ts TA  (c) + Ts 

Aw 
2TT 

(V-25) 
At 

since the uncorrelated signals now effectively add to the system temperatures.    This result can 

be seen by evaluating the cross terms of Eq.(V-7) which were previously neglected. 

VI.   SOURCE  MODELS 

Certain source distributions have very simple complex visibility functions.    For example, 

a point source has a normalized visibility magnitude of unity and a phase 

Deo 
c 

{( sin 6     cos 6„) A6    + [cos 6     cos 6„ sin( L„ - LR)] ARAS 

[cosS     sin<5
s cos(L    - L   )1 A6„} 1VI-1) 

where ARA„ and A6„ are the position offsets of the source from the reference position.    Even 

if only a small coverage of projected baseline is observable,   it is generally possible to use a 

least-squares fitting technique to find the source position.    If the signal-to-noise is good,   no 

ambiguities are likely to arise in the fitting process,  especially if the phase is tracked continu- 

ously so that only a small range of multiples of Zw need be tried in the fitting procedure.    In 

general,  the fitting process is better than taking the two-dimensional transform only over the 

range of projected baselines covered,   owing to the restriction to a particular source model. 

Other simple visibility functions are those of a circularly symmetric source whose phase 

is zero when refined to the source centroid,   and a uniform disk source of radius  R  whose fringe 

amplitude is 

Jt(f  2TT) 

Rjr 
S 

where J .  is the first-order Bessel function,   and  S  is the fringe spacing or the reciprocal of the 

projected baseline length in wavelengths. 

VII.    INDEPENDENT TIME STANDARDS INTERFEROMETER 

Recently,   several interferometers have been operated with independent time and frequency 

standards at the two antennas,   thereby eliminating the real-time link between the two antennas. 

1 I 



Coherent integration of the visibility function over a time  T   is possible if the spectral purity 

and stability of the two frequency standards are such that 

<c 
iA</i(t)s    i _ , 

(VII-1) 

where Aclt) is the phase difference between the two local oscillators after removal of any con- 

stant frequency difference by a frequency offset search.    For a rubidium-controlled crystal clock 

(a crystal clork which is phase locked to a rubidium line),   coherent integration times,   for a 

system at 1666 MHz,   of a few minutes are possible.    For a resolution bandwidth of Af,   the max- 

imum allowable time error AT must be such that 

AfAr « 1 (VII-2) 

Time synchronization close enough for an initial signal detection can,   in practice,   be achieved 

vising Loran time transmissions.    A fringe frequency and time error search can be performed 

by computing the visibility functions for short-time intervals with sufficient frequency resolution 

to account for any delay errors (or equivalently taking enough points in the crosscorrelation 

function to ensure reaching the real zero point),   and then coherently averaging the visibility 

function to maximize the amplitude and minimize the phase shift across the band. 

Stated mathematically,   the frequency offset and delay are determined by maximizing 

V     V     A       ,      x t'V ll't       1TC 
2J    \  At,U') e e        e 

t'    w 

(VII-3) 

iet,(u) 
where A  ,(u.) e is the complex fringe amplitude determined over a short period centered 

at  t'.     T   and   F   are the delay and frequency search parameters,   which may be quantized provided 

| <ei(AFt/2rr)>T| wl (VT|_4) 

and ArAu.' « TT.    The delay search is more conveniently performed in the time domain by search- 

ing the delay shift of the crosscorrelation function. 

For a continuum source,   the cross spectral function of the video signals is 

...       ZlTlb      t      1WT.    A„ 
,     10 K intf A e      e e e st (VII-5) 

for the single-sideband system and 

lu-'T.       ,      10.'T 

A cos(0 + 2?rFRt) e       lntI e       e e st (V1I-6) 

for a double-sideband system,   where  A   and   O  are fringe amplitude and phase,   F     is the fringe 

rate,   T.   .» is the geometric interferometer delav,  and T    is a timing error. intt h J e ° st 
is the tape time 

shift necessary to take out T.   ...    The double-sideband system has the disadvantage of requiring 

a least-squares fitting procedure owing to the lack of a quadrature component,   but has the ad- 

vantage of timing errors not affecting the fringe phase.    The Fourier transform of (VII-5) is 

R     (T) =   <x(t) y(t - T)>  = 2A cos(G + 27rFRt) g^r + rintf 4  rp - T^) 

2A sin(0 + 27TI-"   t) g2(r + r. . ,  +   T ntf        e Tst' (VII-7) 
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where 

-(T) = r max       „ uui 
cos WT   -TT— 

ZTT 

sin u T 
 max 

27TT 
(VII-8) 

and 

,   .       P   max du; 
g2(r) =   \ sinur -27 

1 — cos u: T 
max 

ZlTT 

while the transform of (VII-6) is 

R     (T) = A cos(G + 2ffFRt) g4(T + Tlntf + 
St' 

(VII-9) 

(VII-10) 

The fringe rate F., includes both the source motion and the oscillator offsets and is sufficiently 

slow that immediate crosscorrelation may be performed.    Additional rotation and delay are intro- 

duced in the fringe rate and delay search as in Eq.(VII-3),   as often as is required to ensure no 

significant reduction in fringe amplitude. 

The interval T  over which 

<e 
iA<y>(t) 

>TI -1 (VII-11) 

is the maximum coherent integration period possible without significant reduction in fringe ampli- 

tude.    After the limit of coherent integration has been reached,   it is still possible to improve 

the knowledge of the fringe amplitude with incoherent averaging.    The incoherent average 

(VII-12) 

N 
V 
 1 

i=0 

|A.|2' 

N 

yields no phase information and cannot be used for position measurements or to obtain a bright- 

ness distribution,   but the magnitude will still indicate the effective source size.    The signal-to- 

noise ratio that can be obtained with incoherent averaging approaches that of the Hanbury Brown 

and Twiss interferometer in the limit when the bandwidth of the coherent integration BW ap- 

proaches the bandwidth of signals before crosscorrelation — in other words,   when the coherent 

integration time reduces to the reciprocal of the pre-crosscorrelation bandwidth. 

For a spectral line source,  the noise analysis is: 

f?   lA.I2 
V        l 

N       -   7 -    ? 
V  |S|2+|N|2 

N 
0 

from Eqs.(V-20) and (V-21).    For small signals, 

N 
y 
0 

2 
N 

[A|2 

"     1 
2 

|A|2 

N 

/ 

/|N|4 

4   N 

Ts Ts 
4TA (W)TA M + 4    ;2;>At 

x y 

4 V-2TS  Ts 
x   y 

(VII-13) 

N/N
-
 [(AOJ/27T) Atj 

(VII-14) 

If BW is defined as the reciprocal of At,   and  T   as the total integration time,   then Eq. (VII-14) 

becomes 
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•V(Aw/2ir) T [>J(ACO/2TT)/S1BVJ] 

and the signal-to-noise ratio is 

/    Ax   Ay\ s/(Ao;/27r) T N/AO)/27 

4^TSTS 

(VII-15) 

T0  Tc LS     S    / \I2EW \        x      y/ 

When the source being observed has spectral features,   it is possible to coherently average 

the data using one of the strong features as a phase calibration.    This method can effectively 

make the interferometer phase stable when the signal-to-noise ratio is good on the calibration 

feature.    However,  the complex visibility functions are now no longer referred to the sky,  and 

a map relative to the calibration feature will be obtained.    For this averaging process, 

A=   Z^ N 
0 

where w       , is the phase of the calibration feature for the n     coherent integration period.    This 
^ncal " 

process has no effect on the interferometer noise provided the calibration feature has negligible 

noise.    Another possible technique for removing differential phase noise due to drifting standards 

is to simultaneously observe a strong calibration source with another set of antennas or off-axis 

feed system.    If the calibration source is strong enough to produce a phase with little noise in 

the coherent integration period,   these phases can then be used to increase coherent integration 

time on the source being examined.    Of course,  the different position of the calibrator would 

have to be taken into account in obtaining the phase correction term.    This technique could also 

be used to remove the atmospheric distortion which limits optical astronomy.    For example, if 

a calibration star is sufficiently close to the object of interest,   say,   a planet,   the fringe pattern 

will be jittering in the same fashion on the planet as it does on the star;   consequently,   it should 

be possible by electronic image superposition to integrate the visibility functions coherently. 

The phase change due to the atmosphere to the first order for a plane parallel atmosphere is 

-       \      (n(i ) - 1) di -   \       (n(i') - 1) di' c    4-> 4-, 
(VII-16) 

where I   and V   are the paths through the atmosphere.    Typically,   the atmosphere adds about 

20 cm to the path and,   owing to turbulence,   the path will not be the same for the two apertures 

of the interferometer.    This differential phase fluctuation which is given by the above equation 

is not serious at radio frequencies below about 3 GHz as it seldom reaches 90° peak,   even for 

widely separated antennas.    However,   at optical frequencies,   it is significant for paths sep- 

arated by only a few centimeters.    An approximate angular distance over which the differential 

phase fluctuations will remain highly correlated is the diameter of an aperture over which phase 

deviations are smaller than  ir  divided by the length of the atmosphere where most fluctuations 

occur.    In the optical range,  this is only about 20 seconds of arc,   but this is still large compared 

with the resolution;   consequently,  the use of a phase calibrator within 20 seconds of the object 

of interest could be used to take out atmospheric fluctuations.    At 8 GHz,   a phase calibrator 

within 30 minutes of arc would probably suffice. 
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VIII.    HAYSTACK-MILLSTONE INTERFEROMETER 

The 120-foot antenna of the Haystack Microwave Research Facility and the 84-foot antenna 
of the Millstone Radar Facility,   both operated by Lincoln Laboratory,   were used as an inter- 

ferometer.    The antennas are separated by approximately 2250 feet along a line approximately 

19° East of North.    This baseline gives a minimum fringe spacing of 54 seconds of arc at 18 cm 

and provides a good range of projected baseline for a wide range of declination.    The convenient 
baseline and the spectral processing equipment at Haystack make the system ideal for a study 

of OH emission regions that were unresolved with a single antenna.    Figure 2 shows the projected 

baseline coverage for the OH emission sources. 
I3-31-10985 I 

Fig. 2. Fringe amplitude phase coverage 

for some OH sources. Limits shown are 

observable limits. 
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A block diagram of the Millstone receiver front end is shown in Fig. 3.    Circular and linear 
polarization is obtained from a dual-mode horn whose output ports give vertical and horizontal 

polarization.    Combining vertical and horizontal signals through a hybrid complex gives left- 
and right-circular polarization after correct adjustment of the phase lengths.    The antenna output 

is amplified by a tunnel diode amplifier and then filtered to reject the image band.    A ferrite 

switch is included for calibration measurements.    In the normal interferometer mode,   the switch 

remains switched to the antenna side.    A noise source is used for single-antenna and system- 
temperature measurements. 

The local oscillator signal is derived by phase locking an oscillator to the sum or difference 

of a harmonic of 67 MHz and a signal whose frequency could be varied approximately 28 MHz. 
For the OH emission measurements,  the 24     harmonic was selected.    The output of the oscillator 
was filtered to attenuate any spurious signals that tend to be produced by the synchronizer. 

Figure 4 is a block diagram of the local oscillator system. 
The mixer output is amplified by a 30-MHz amplifier with a 10-MHz bandwidth.    A line driver 

then boosts the level to 100 mW.    The Haystack receiver front end did not require the line driver, 
owing to its proximity to the control room where the IF outputs are combined.    Otherwise,   the 
Haystack front end is similar to that at Millstone. 

The intersite coupling of the radiometers involves the transmission of antenna-pointing 
commands to Millstone,   remote control of the radiometer,  transmission of the intermediate 
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Fig. 3.    Radio frequency section of Millstone receiver. 
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Fig. 5.    Line servo to maintain phase stability. 

frequency to Haystack,   and two-way coupling of the local oscillator reference signals.    To main- 

tain good phase stability,   the reference signals are transmitted along a servo-controlled line 
that nullifies line length changes caused by temperature change and other effects.    The trans- 

mission system also has to overcome a large line attenuation of 55 dB for one-way transmission 
at 67 MHz.    The selection of a lower basic frequency would have reduced attenuation,   but would 
have made phase locking to L-band more difficult.    A block diagram of the line servo is shown 
in Fig. 5.    The 67-MHz reference signal is amplified to approximately 1 watt and transmitted to 
the line through a hybrid junction.    At the receiving end of the line,   a portion of the signal is 
reflected.    The reflected signal undergoes phase reversal with a 100-kHz rate as the diode switch 
modulates the reflection coefficient from +2 to —\.    Very little of the 100-MHz modulation is 
passed into the 67-MHz amplifier because of the isolation afforded by the hybrid tee.    At the 

transmitting end,   the reflected signal is mixed with the 67-MHz reference signal and amplified. 
The output of the 100-kHz amplifier is proportional to cos cp cos 27rft,   where f = 100 kHz,   and   ip 
is the phase of the 67-MHz signal after having traveled twice the line length.    Multiplication of 

this signal by the 100-kHz reference signal produces the necessary error signal from the servo 

loop.    The high loop gain makes it possible for the line servo to maintain a constant electrical 
line length to within a small fraction of an inch. 

The IF signals are either added or subtracted,   as shown in Fig. 6.    The combined signal is 

filtered and converted to video.    The autocorrelation function of the clipped and sampled video 
signal is taken with a digital correlator. 

The difference of the autocorrelation functions for the added and subtracted signals yields 
the real part of the crosscorrelation function since 

[x(t) + y(t)| [x(t - T) + y(t - T)1 - [x(t) - y(t)] [x(t - T) - y(t - T)1 

=  2x(t) y(t -T) + 2y(t) x(t - T) (VIII-1) 

and 
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j    [ <x(t) y(t - T)>T +  <y(t) x(t - T)>T] 

= 4 Re x(u) y*(oj) 

e dr 

4 Re A e 
- io) T     J t) ref 

(VIII-2) 

The real and imaginary components of the complex visibility function can be found by a least- 

squares fitting.    This system yields an effective system temperature of 

T     T LS     S x    y 

if the signal powers are added with equal power.    However,   the noise level is twice that of direct 

c r os sc or relation. 

Autocorrelation functions of the sum and difference signals are transferred alternately to 

a computer every 100msec.    The basic correlation period is 87.5 msec.    The system is blanked 

for 12.5 msec while the data are being transferred to the U490 computer.    Signal bandwidths of 

4 Mil/.,   1.2MIIz,   400 kHz,   120 kHz,   and 40 kHz can be analyzed by selecting appropriate filter 

and sampling frequencies.    The autocorrelation function is a 16-bit binary word for each of 100 

delays.    An extra bit is used to indicate the state of the switching reference signal.    The auto- 

correlation functions,   together with continuum data,   bandwidth and correlator mode,   and antenna 

command azimuth and elevation,   are transferred to magnetic tape.    A block diagram of the whole 

system is shown in Fig. 7. 

Single-antenna measurements were made to measure the aperture efficiencies.    The antenna 

temperatures of Cassiopeia A were 160° and 180°K,   which indicated efficiencies of 40 and 25 per- 

cent for the Millstone and Haystack antennas,   respectively. 

After the individual radiometers were examined for linearity,   bandpass,   and lack of spurious 

signals,   the system was checked for phase coherence and phase stability.    The test arrangement 

is illustrated in Fig. 8.    A signal from a test oscillator is connected to each radiometer individ- 

ually and then simultaneously.    When the oscillator is swept in frequency,  the bandpass is dis- 

played when only one radiometer is connected to the oscillator.    When both radiometers are 
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Fig. 8.    Interferometer test system. 
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swept simultaneously, fringes appear because of the phase relationship between the radiometer 

outputs. The fringe spacing in Hertz is the reciprocal of the delay in seconds. Measurements 
of the fringe pattern and bandpass functions showed that the phase noise in the system produced 

less than 2-percent reduction in fringe amplitudes. The phase stability was better than 50° during 
24 hours. Some of this shift may have been due to the measuring technique, as observations of 

continuum radio sources indicated better stability. 

The trombone section of the line servo was observed to move approximately 5 feet during 
the sunrise and sunset period when the temperature changed about 50° F. 

IX.   WIDE  EFFECTIVE  BANDWIDTH  INTERFEROMETER 

When an independent standards long-baseline interferometer is used to measure the positions 

of unresolved continuum point sources,   the phase information is seldom usable since it is not 

possible to calibrate the phase at time intervals sufficiently frequent to ensure its constancy. 

Consequently,   the position must be obtained by least-squares fitting the fringe rate F     to obtain 
the offsets in right ascension and declination.    From Eq. (11-16), 

FR = T1 — f^r •S6B cos6s sin(Ls - V (,x-n 

and,   hence, 

D  dLS 
AKR = T ST COS6B lA6s sin6s sin(Ls - LB' 

+ ARAS cos6s cos(Ls - LB)]       . (IX-2) 

If,   however,   the delay can also be precisely measured,  then least-squares fitting to the delay 

difference AT.   ,„ yields more information on the source offsets.    From En. (11-16). intf J 

AT.   .C = — {(sin6T1 cos 6„) A6., + (cos 6... cos <5„, sin( Lc - L,,)l ARA,, intf       c B S S      l B S S B ' S 

- [cos6B sin6g cos(Lg-LB)] A6S)       . (IX-3) 

Like the fringe-rate fitting, the delay does not have the ambiguity difficulties that fringe-phase 
fitting presents. In fact, one measurement of fringe and delay gives the source position offset. 

Fringe-rate fitting yields an offset resolution of 

AI 

I) 27r(dLs/dt) (IX-4) 

or,   if the fringe rate can be measured to 1 cycle per hour,   the offsets can be measured to ap- 
proximately 24 times the fringe spacing.    Delay fitting yields an offset resolution of 

w (^ fe) (ix-s) 

where A    and OJ   /2.TT are some "center" wavelength and frequency.    For example,   measurements o o 
of delay to 1 nsec would yield an offset resolution of twice the fringe spacing for a 2-<;ilz center- 

frequency system. 
In practice,   measurement of delay between two very long baseline interferometer stations 

would not require recording a very large bandwidth,   as the signal can be sampled at various 
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small-bandwidth windows within a large bandwidth.    Extrapolation of the fringe phase from one 

window to the next could provide an increasingly precise delay measurement. 

Measurement of delay and fringe rate with a very long baseline interferometer would provide 

an extremely precise technique for measurement of the positions of radio sources;   then,   re- 
versing the previous analysis would provide a precise technique for measurement of positions 
on the earth's surface as well as irregularities in the earth's rotation. 

X.     SUMMARY AND CONCLUSIONS 

In Sec. II,   we discussed the principles of interferometry,   or how the angular distribution of 
electromagnetic radiation is related to the electric field at certain "sample" points.    While an 

antenna samples and adds the electric field at many points by virtue of its structure or geometry, 

a two-element interferometer samples the single antenna "filtered" electric field at only two 
points instantaneously,   but can build up many sample points as the baseline changes in time. 
Since all the sample points are not merely added but crosscorrelated,  the resultant antenna can 

be imagined to be electrically steered by the phase term in the two-dimensional transform. 
The noise analysis of Sec. V shows the relation of the noise in the fringe amplitude and phase 

to the noise levels of the individual systems.    It is interesting to note that,   while an interferometer 

can map an area within the single-antenna beam with a signal-to-noise ratio of a single antenna, 
a super large parabolic antenna (diameter approximately that of the maximum interferometer 
baseline) used to map the same region does not gain in signal-to-noise ratio by the ratio of its 

area to the single-dish area.      This is because the super  large dish has to be mechanically 
scanned over the region; hence, the effective integration time is reduced by the ratio of its beam 
area to the map area.    Thus,   an interferometer uses the collecting area efficiently,   like a 
multiple-feed antenna or camera with photographic emulsion. 

Although this report mainly discusses spectral line interferometry or the mapping of fre- 

quency dependent brightness distributions,   the section on wide effective bandwidth interferometry 
(Sec. IX) can be alternately viewed as using the wide bandwidth to increase the number of sample 
points in the complex visibility plane when the source distribution remains constant with 

frequency. 
Because very large antenna structures are not mechanically feasible,   interferometry has 

become a very important technique for high resolution source mapping and point source position 
measurements.    Very long baseline interferometers have application for clock synchronization, 

antenna site position measurement,   and numerous geophysical experiments as well as astronomi- 
cal measurements. 
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